| This abstract was prepared for submission to the session "General Topics in Nuclear | |--| | Chemistry," at the National Meeting of the American Chemical Society in New Orleans, | | LA, March 23-27, 2003. | Prepared: November 11, 2002 ## FIRST CHEMICAL INVESTIGATION OF HASSIUM (Hs, Z=108) Ch.E. Düllmann^{1,2,*}, W. Brüchle³, R. Dressler², K. Eberhardt⁴, B. Eichler², R. Eichler³, H.W. Gäggeler^{1,2}, T.N. Ginter⁵, F. Glaus², K.E. Gregorich⁵, D.C. Hoffman^{5,6}, E. Jäger³, D.T. Jost², U.W. Kirbach⁵, D.M. Lee⁵, H. Nitsche^{5,6}, J.B. Patin^{5,6}, V. Pershina³, D. Piguet², Z. Qin⁷, M. Schädel³, B. Schausten³, E. Schimpf³, H.-J. Schött³, S. Soverna^{1,2}, R. Sudowe⁵, P. Thörle⁴, S.N. Timokhin⁸, N. Trautmann⁴, A. Türler², A. Vahle⁹, G. Wirth³, A.B. Yakushev⁸, P.M. Zielinski⁵ - ¹ Departement für Chemie und Biochemie, Universität Bern, CH-3012 Bern, Switzerland - ² Labor für Radio- und Umweltchemie, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland - Gesellschaft für Schwerionenforschung mbH, D-64291 Darmstadt, Germany - ⁴ Institut für Kernchemie, Universität Mainz, D-55128 Mainz, Germany - ⁵ Nuclear Science Division, Lawrence Berkeley National Laboratory, CA 94720 - Department of Chemistry, University of California, Berkeley, CA 94720-1460 - ⁷ Inst. of Modern Physics, Chinese Academy of Sci., Lanzhou 730000, P.R. China - Flerov Laboratory of Nuclear Reactions, JINR, 141980 Dubna, Russia - ⁹ Reseacrch Center Rossendorf e.V., D-01314 Dresden, Germany - * Present address: Nuclear Science Division, Lawrence Berkeley National Laboratory, CA 94720 ## **Abstract** We present the first successful chemical investigation of Hassium (Hs, Z=108). Relatively long-lived ($T_{1/2}\sim10$ s) Hs nuclides were produced in the nuclear reaction $^{248}\text{Cm}(^{26}\text{Mg};5,4n)^{269,270}\text{Hs}$. Fusion products were converted to volatile HsO₄, which was rapidly transported to a thermochromatography detection system. The deposition temperature of HsO₄ on the column surface material was measured using a column consisting of PIN diodes suitable for registering α -decaying and spontaneously-fissioning nuclides. A longitudinal negative temperature gradient from -20 to -170°C was established along the column. A dose of 1.0·10¹⁸ ²⁶Mg-projectiles was accumulated. Seven correlated decay chains were registered. Three were attributed to the decay of ²⁶⁹Hs, and two chains were tentatively assigned to the decay of the new isotope ²⁷⁰Hs. The two last decay chains were incomplete. From the deposition temperature, the adsorption enthalpy was deduced as (-46±2) kJ/mol for HsO₄ compared to (-39±1) kJ/mol for OsO₄, indicating a comparable or slightly lower volatility for HsO₄. The formation of a highly volatile oxide justifies the classification of Hs into group 8 of the periodic table.